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Abstract 
The paper presents the experimental implementation of the historical problem of con-

structing a quadric defined by nine points. It considers the well-known Engel algorithm (En-
gel J. H., 1889). Until recently, the algorithm has shown only the theoretical potential of con-
structing a quadric. The paper describes the software used for the experimental implementa-
tion and exploration of the algorithm. The programs are written in the AutoLisp language. 
The experiments were carried out in the AutoCAD suite.  

This study presents geometric constructions resulting in the implementation of the prob-
lem. The construction stages are considered in detail. The first and main stage defines nine 
points to constructing a conic on the quadric surface. The next stages define the quadric de-
terminant of three conics and construct the center and the principal axes of the quadric, the 
frame, and the final surface. The paper studies the construction features at all stages. The 
primary focus is to identify and study the inner relationships of parameters leading to the ap-
pearance of real or imaginary solutions.  

The scientific novelty of the paper lies in determining the conditions, under which the so-
lution is reached without operations using imaginary parameters. The region of exact real so-
lutions for a set of nine points is determined. The paper shows that this region has the form of 
a curved line approximated by a hyperbola and proposes its construction algorithm.  

The author proposes and investigates an algorithm for constructing the principal axes of a 
quadric, consisting in determining a cutting plane for which the foot of the perpendicular 
dropped from the center of the quadric coincides with the center of the conic section. In this 
case, the perpendicular takes the position of one of the principal axes of the quadric.  

The relevance of the paper lies in the experimental implementation of the historical Engel 
algorithm, as well as the development and demonstration of modern geometric methods for 
solving complex geometric problems. 

Keywords: 3D computer geometric modeling, quadrics, second-order surfaces, nine-
point quadric problem, AutoCAD, AutoLisp.  

 

1. Introduction 
The geometric solution to the problem of constructing a second-order surface (hereinaf-

ter referred to as a quadric) using its nine points has been of interest due to the analogy of 
this problem with constructing a conic using five points. The construction of a conic based on 
the Pascal theorem is a well-known problem in geometry courses [1]. A similar quadric prob-
lem in its “geometrically accurate” formulation (only using a compass and a ruler) has not 
been solved, although due attention has been given to it historically [2]. The problem is still 
being discussed, despite the belief that there is no “geometrically accurate” solution to the 
problem [3, 4, 5]. 

Since the 19th century, there have been algorithms [4] in which going beyond the re-
strictions of “geometrical accuracy” has allowed the authors to propose a solution to the 
quadric problem. [4] considered several similar algorithms. Our paper deals with one of them 
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– the Engel algorithm (Engel J. H.) [6]. The content of the algorithm is given in [4]. We will 
consider the distinct features of the experimental implementation of the algorithm. The algo-
rithm allows us to construct a conic or a section of the desired quadric, using nine points. The 
center, axes, and surface of the quadric are determined based on this conic. 

The use of the algorithm provides for the construction of conics by five points, finding the 
intersection points of the conics with a straight line and a plane, as well as mutual intersec-
tion of the conics. Since such constructions were impossible until recently, the algorithm 
showed only the fundamental possibility of constructing a quadric. 

 The practical implementation of the Engel algorithm has become possible in modern 
CAD using programming tools and 3d computer modeling. In particular, we developed and 
used such tools when studying quadrics [7–9]. Accumulated experience has allowed us to 
turn to the experimental implementation of the quadric problem and supplement the works 
[3–5].  

The main problem which arises in the experimental implementation of the Engel algo-
rithm is the appearance of imaginary points during solving when straight lines intersect with 
conics. It is recommended that imaginary points be substituted with their real analogs [3–5, 
10]. However these recommendations should be verified experimentally. Even if such a sub-
stitution is possible, it complicates the constructions significantly.  

Our preliminary experiments have shown that there are always real solutions to the 
quadric problem without the formation of imaginary points. Our task is to determine the re-
gion and conditions for the implementation of real solutions. 

The purpose of the work is as follows: 1 – to implement experimentally the Engel algo-
rithm for constructing a quadric defined by nine points; 2 – to determine and explore the re-
gion of real solutions to the quadric problem; 3 – to bring the solution to a visual image of the 
surface.  

2. Methods and software  
The experiments were carried out in the AutoCAD suite. The AutoLisp language was used 

for programming. 
The construction of a quadric according to the Engel algorithm provides for multiple rep-

etitions of homogeneous operations. To this end, we developed several special programs. The 
algorithm cannot be based only on the main capabilities of the AutoCAD suite and AutoLisp 
programs. The specifications of our special programs are shown below. 

Program 1. The construction of a conic by five points [11] implements the “exit to space” 
method [12, 13]. Using Pascal’s hexagon, we find tangents at two out of five points (points p1, 
p2) according to the algorithm [1, p. 168]. We construct a circular cone taking the tangents for 
contour straight line generators. We select one of the remaining points, for example, point p3, 
and erect the perpendicular to the plane of five points until it intersects with the cone at point 
p3*. We construct a section of the cone by the plane p1, p2, p3* and then orthogonally project 
the section onto the plane of the defined five points. The projection is the desired conic. As 
compared to the original version [11], the program is fitted with algorithms for the optimal 
selection of the points p1, p2, p3 regulating the length of the resulting conic branches. The 
conic type also determines its metric parameters – axes, center, focuses, asymptotes of hy-
perbolas, parabola directrix. The error of constructing a conic by this program is at the level 
of 10-5…10-8 [14]. 

Program 2. The intersection of a conic with a straight-line segment or a plane. We divide 
the conic branches into 500...1000 segments. We find an intersecting segment, additionally 
divide it into 20...50 parts, and specify the intersection points until we achieve the required 
accuracy.  

Program 3 determines the intersection points of two conics. We divide each conic branch 
into 500…1000 segments. We find intersecting pairs of segments. Then we interrupt the cal-



culation if the number of such pairs has reached four and additionally divide the segments of 
the found pair into 20...50 parts and specify the intersection points. 

Program 4 constructs auxiliary conics c1, c2 (see Section 4 below). We find their intersec-
tion with the straight lines m, n. We construct the conic с3 and determine the parameter Δ, 
on which the problem solution accuracy depends.  

Program 5. The construction of fields defining the boundaries of the real or imaginary so-
lution (see Fig. 3, a), with color indexing depending on the types of the resulting conics c1, c2 
and the intersection options of these conics with straight lines m, n. 

Program 6. Constructing the series of values of the parameter Δ and determining the pa-
rameters kF*, kG*, at which Δ = 0, i.e., the accurate solution is achieved. 

Program 7 determines the axis of the quadric in the iterative movement cycle of the cut-
ting plane according to the algorithm. This brings it to a position when the perpendicular 
dropped from the center of the quadric to the plane coincides with the segment connecting 
the centers of the quadric and the conic of the section.  

Programs 2–7 implement iterative construction cycles until the specified and controlled 
error is achieved. The permissible error was taken at the level of 10-3 of the determined value. 

In addition to the above programs, we used the library of geometric functions of the Au-
toLisp suite, for example, the construction of the intersection point of straight lines, as well as 
the functions of cyclic, algebraic, and logical calculations. 

We used the method proposed in [3–5] which compares the obtained experimental ob-
jects with predetermined control objects. The control objects include a quadric, a section, a 
conic, a center point, and quadric axes. One- and two-sheet hyperboloids, a hyperbolic parab-
oloid, and an ellipsoid were considered as control quadrics. In this paper, we give examples of 
two control quadrics: a one-sheet hyperboloid; and a hyperbolic paraboloid. 

Nine points were defined on the surface of the control quadric. Such point definition au-
tomatically takes into account the restrictions [3–6] to their relative position. 

The accuracy (or error) of the experiments, which depends on the errors at all construc-
tion stages, was estimated by the deviation of the constructed distinguished points of objects 
from their control values. For example, this could be the distance between the vertices of the 
experimental and control conics, by the angle between the found and control axis of the quad-
ric, inter alia. 

In our paper, the quadric is constructed in the following sequence: 
• According to the Engel algorithm, construct a conic for the defined nine points as a sec-

tion of the desired quadric by the plane defined by points 1, 2, 9; 
• Construct two more conics using the first conic and two randomly chosen triples of 

points from the remaining six defined points. Consider the constructed three conics as a ge-
ometric determinant of the desired quadric; 

• Find the center of the quadric by the determinant; 
• Find the principal axes of the quadric by its determinant and center; 
• Using the determinant and axes of the quadric, construct its frame and surface. 

3. Control objects and coordinate axis 
Let us therefore construct the control objects: a quadric and nine points on its surface. 

We arbitrarily number (name) the points. We construct the control conic as a section of the 
control quadric by a plane defined by points 1, 2, 9 (Fig. 1, a). We selected these points ac-
cording to the Engel algorithm. We hide (“freeze”) the control objects. There are nine points 
left. In our experiment, the control quadric is a one-sheet elliptic hyperboloid, the control 
conic is the ellipse e, and the selected points have the coordinates given in Table 1. 

  
 
 
 



Table 1. Coordinates of points for the one-sheet hyperboloid 

  
Statement of Problem. We have nine points which are randomly numbered 1….9. Assum-

ing that the points define a quadric, we should construct a conic as a section of the quadric by 
a plane defined by points 1, 2, 9. 

  

 

а) b) 
Fig. 1. The defined nine points and control conic (a). Initial constructions and the coordinate 

axis (b). 
  
According to the Engel algorithm, we perform the following constructions. Let us consid-

er planes defined by triples of points: α (1,2,9); β (3,4,5); γ (6,7,8). We then construct the 
edges and the vertex of the trihedral angle formed by these planes. The edges of the angle are 
straight lines m (α ∩ γ); n (α ∩ β); g (β ∩ γ).  The vertex of the angle is point E (Fig. 1, b). 

  The Engel algorithm defines two points F and G on the straight line g. The points are de-
fined by dimensionless coordinates kF and kG. Let us introduce the average parameters for 
the region of the defined nine points P and scale. Point P (Px, Py, Pz) is the center point of the 

region of the nine defined points. For example, 𝑃𝑥 =
∑ 𝑝𝑥𝑖

9
1

9
 , where 𝑝𝑥𝑖 are the x-coordinates of 

the defined nine points. Scale is the average size of the region of the defined points. 𝑆𝑐𝑎𝑙𝑒 =
∑ 𝑑𝑖𝑠𝑡(𝑝𝑖,   𝑃)9

1

9
 , where 𝑑𝑖𝑠𝑡(𝑝𝑖,   𝑃) is the distance from the i-th point 𝑝𝑖 to point P. In the example 

considered, in the initial (“world”) coordinate system (see Fig. 1, a), point P (–0.769, –0.610, 
20.546). S𝑐𝑎𝑙𝑒 = 17.388.  

Point # X Y Z 

1 10.700  3.287  13.755 

2 –9.056  5.895  28.399 

3 15.736  –8.092  36.611 

4 5.463 7.694 8.821 

5 –2.736 –10.869 2.989 

6 –15.380 4.495 7.180 

7 -9.672 9.553 35.470 

8 –3.667 –11.445 37.209 

9 1.692 –6.008 14.478 



In order to define points F, G, let us introduce the axis kF, kG on the straight line g (Fig. 
1, b). The origin of coordinates, point O, is defined as the foot of the perpendicular dropped to 
the straight line g from point P. The axis is directed opposite to the vertex E. The unit of 
measurement is the scale value. Points F and G will be defined on the straight line g by the 
parameters kF and kG:  𝐹 = 𝑠𝑐𝑎𝑙𝑒 × 𝑘𝐹 and 𝐺 = 𝑠𝑐𝑎𝑙𝑒 × 𝑘𝐺.   

4. Auxiliary conics. Real and imaginary solutions 
Let us conduct a preliminary experiment. We set the parameters kF and kG and use them 

to define points F and G on the straight line g (Fig. 2, а). For example, kF = 4.453, kG = –
4.467. Based on program 1 (see Section 2), we construct the conic c1 using points 3, 4, 5, F, G 
and the conic c2 using points 6, 7, 8, F, G. The conics c1, c2 have two common points F, G. 
Depending on the position of the points, each conic can be an ellipse or a hyperbola. A parab-
ola can be formed in exceptionally rare cases. In our example, c1, c2 are two hyperbolas (Fig. 
2). 

  

 

а) b) c) 
Fig.2. The intersection of the straight lines m, n with the conics c1, c2: а – two real intersec-

tions; b – a real and an imaginary intersection; c – two imaginary intersections. 
  
Using program 2, we find the intersection points M1, M2 of the straight line m with the 

conic c1 and the intersection points N1, N2 of the straight line n with the conic c2. We thus 
obtain the following results. All four points are real (Fig. 2, a), i.e., the straight lines intersect 
each of their conics at two points. One or both intersection points may be missing. So-called 
imaginary points or imaginary intersections are formed. Real and imaginary intersections can 
appear in various combinations. For example, at the parameters kF=3, kG =–3, a real inter-
section was formed with the hyperbola c1 and the straight line m and an imaginary intersec-
tion was formed with the hyperbola c2 and the straight line n (Fig. 2, b). At kF=6, kG = –1.5 
there are no real intersections, i.e., two imaginary intersections (Fig. 2, c) appeared. 

There may be no real intersection due to the insufficient length of the hyperbola or pa-
rabola branches. Such solutions will be called “conditionally real”. In order to identify them, 
it is sufficient to determine that there is no imaginary intersection. 

5. The region of real solutions 
A real solution of the quadric problem is possible only for the real intersections of the 

conics c1, c2 with the straight lines n, m. We determined the region of real solutions using 
programs 2–5. We put markers on the rectangular region kF, kG (Fig. 3, а) with a step of 
0.25…0.5, which color was determined by the types of the conics c1, c2 and their intersection 
option with the straight lines m, n. 



 
Table 2. Color of the region markers (to Fig. 3, а; Fig. 10, а) 

Marker Conic types Option  

Conic types: E – ellipse; H - hyperbola. In-
tersection options: 
1 – both real; 
2 – a real and a conditionally real; 
3 – a real and an imaginary; 
4 – two imaginary 

 E+E, E+H, H+H 1 

 E+H, H+H 2 

 
E+E 3 

 H+H 3 

 E+E 4 

 
E+H 4 

 H+H 4 

  
If both intersections are real, the marker is blue (option 1), while the conics can be ellip-

ses or hyperbolas in various combinations. If one or both conics are hyperbolas with short 
branches, and it is sufficient to increase the length of the branches to obtain a real intersec-
tion, the marker is orange (option 2). The remaining colors of the markers show other options 
of imaginary intersections. For example, if it is blue color (option 3) – two ellipses were 
formed, the intersection is real with one of them and imaginary with the other one. 

The experiments show that, depending on the conditions of the problem, the solution re-
gions have the form of stripes, islands, or extensive zones on the coordinate plane kG, kF. 
Since points F and G jointly determine the conic types, the regions are symmetric relative to 
the diagonal line kF=kG. The coincidence of points F, G leads to defining the conics c1, c2 by 
four points, which is impossible. Therefore, the field is not defined on the diagonal line 
kF=kG. 

6. The hyperbola of real solutions 
The presence of real intersections is a necessary but insufficient condition for resolving 

the problem in general. Let us consider the second necessary condition for resolving the 
quadric problem. 

Let us construct the conic с3 by defined point 1 and found points N1, N2, M1, M2. We 
construct a line segment k (1,2) and determine point A (k ∩ c3). Let Δ be the distance between 
points A and 2. If the length of the segment (1, A) is less than the length (1,2), Δ > 0, and vice 
versa. 

According to the Engel algorithm, the conic c3 should pass through point 2, i.e., the con-
dition Δ=0 should be satisfied. This does not happen if the parameters kG, kF are set arbitrar-
ily, i.e., Δ≠0. The condition Δ=0 is achieved by adjusting the parameters kG, kF. Let us con-
sider an example.  
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Fig. 3. Field (а) and series (b–f) of real and imaginary solutions. 
  
Let us set the parameters kG, kF in the region of real solutions: kG=9.3, kF=–4.5, con-

struct the conic c3 and the segment k and find point A. In this example, the conics obtained 
c1, c2, c3 are hyperbolas. The value of Δ(2, A) was 3.25 (Fig. 4, a).  

 Let us shift the point (kG, kF) along the kG axis and set kG= –5, kF=–4.5. The conics c2, 
c3 have become ellipses. Δ =–5.1 (Fig. 4, b).  

  

 

а) b) c) 
Fig. 4. Determining the parameter Δ: а – Δ > 0; b – Δ < 0; c – Δ = 0. 

 



A change in the sign of Δ in the interval –5 < kG < 9.3 indicates that there are values kG*, 
kF*, at which Δ=0, i.e., the conic c3 will pass through point 2. In order to verify this provision 
and determine kG*, kF*, we fixed the value kF and used program 4 to construct a graph of Δ 
(kG) at kF = –4.5. Points kG were set as a horizontal series H-H (Fig. 3, a) passing through 
the region of real solutions. The resulting dependence Δ(kG) is close to a linear one (Fig. 3, b). 
kG* was determined in an iterative cycle. We found the values of kG*=4.395, kF*=–4.5, at 
which Δ = – 0.000262. The construction of the conics c1, c2, c3 at these values led to the 
practical coincidence of points 2 and A (Fig. 4, c).  

The constructions performed at this stage resulted in the conic c3 passing through six 
points 1, N1, N2, M1, M2, 2. Points 1, 2 are defined, points N1, N2 result from the intersection 
of the conic c1 (3, 4, 5, F*, G*) and the straight line n, points M1, M2 are formed by the inter-
section of the conic c2 (6, 7, 8, F*, G*) with the straight line m. Points F*, G* are determined 
by the conics 1, N1, N2, M1, M2 passing through point 2. 

The set of points kF*, kG* obtained at |Δ| < tol define a line of exact real solutions h for 
the defined set of nine points. Here tol is the tolerance for construction errors. In our experi-
ments, tol = 1*10-3.  

Numerous experiments with different options of defining 9 points (i.e. with different con-
trol quadrics and conics and different numbering of points) have shown that where the 
adopted coordinate system is used, the line h is approximated by a hyperbola with high accu-
racy (see also Fig. 10, a). One of the hyperbola axes always coincides with the diagonal 
straight line kF=kG. In the example considered (Fig. 3, a), the imaginary hyperbola axis coin-
cides with the diagonal line. 

In order to construct the hyperbola h using program 6, we need to construct four diagonal 
series of kF (kG) values, determine the dependence Δ (kG) in each of them (Fig. 3), and find 
points Q(kG*, kF*), at which |Δ| < tol. Since the series pass through the region of imaginary 
solutions, the curves Δ (kG) have gaps. The series A-A, B-B (Fig. 3, c, d) determine the direc-
tion of the hyperbola axes and identify the vertices of the hyperbola or points close to them. 
The series C-C, D-D (Fig. 3, e, f) define four more points Q of the hyperbola h. 

7. Final conic and estimate of the construction error 
Let us select two points Q on the hyperbola h. The points can be located on the same or 

different branches of the hyperbola. Each of them should satisfy the condition |Δ| < tol. These 
can be points used to construct the hyperbola. This condition is satisfied when determining 
these points. If two new points belonging to the hyperbola are selected, we need to specify 
their coordinates from the condition |Δ| < tol. 

For example, let us select points Q2 (kG* = 4.395, kF*= –4.5) and Q6 (kG* = 8.860, kF*= 
–3.071) (see Fig. 3, а). We need to repeat the above constructions for each point and obtain 
the conic c3 (1, N1, N2, M1, M2, 2). Let us denote the conic c3 for the first point by c3-1, and 
for the second point – by c3-2 (Fig. 5). 

  

 
Fig. 5. Final conic c4. 

  



Since the points used to construct the conics c3-1 and c3-2 belong to the plane α (m∩n) = 
α(1,2,9), the conics intersect at four points. The conics have two common points 1, 2. We need 
to find two more points of their intersection.  

Let us use program 3. After the conics c3-1, c3-2 are intersected, we find the missing 
points S, T (Fig. 5). If the points S, T are closely spaced or missing, we need to choose other 
points Q on the hyperbola h or increase the construction accuracy.  

After constructing a conic using points 1, 2, 9, S, T, we can obtain the final conic c4 (Fig. 
5), which belongs to the surface of the desired quadric. In our example, the conic c4 is an el-
lipse.  

In order to determine the construction error in our example, we measure the distance be-
tween the vertices of the major axis of the constructed c4 and control e (see Fig. 1, a) ellipses. 
The absolute error was 0.0138. At the average size of the region of the defined points scale = 
17.388, the relative error was ≈0.08%. 

If the constructions were carried out without a control conic, then in order to estimate the 
error, we need to perform constructions for another pair of points Q selected on the hyperbo-
la h or change the numbering of six out of the nine defined points keeping plane 1, 2, 9 and 
repeat the constructions. The error is estimated by comparing the results of two or three con-
structions. 

8. The implementation sequence of the Engel algorithm 
Let us summarize the results of the studies and consider the sequence of actions for con-

structing a conic on the surface of the desired quadric. 
1. Prepare the software (see Section 2).  
2. In order to test the programs and the algorithm, construct control objects: a quadric, a 

conic, nine points on its surface, the center and axes of the quadric, which will be used to 
check the construction accuracy (see Section 3, Fig. 1, a). 

3. Construct the lines m, n, g. Determine the vertex of the trihedral angle E, the center of 
the region of nine points P, and the average size of the scale region. Taking into account these 
values, set the coordinate axis on the straight line g to specify points F, G according to the pa-
rameters kG, kF (see Section 3, Fig. 1, b). 

4. Study the field of real solutions (see Sections 4, 5, Fig. 3). This action is advisable but 
not mandatory.  

5. Construct the diagonal series A-A, B-B, etc. (see section 6, Fig. 3). Determine the points 
of exact solutions Q1, Q2 of the hyperbola h for each series. It is sufficient to find two points 
of the hyperbola and their relevant pairs of values (kF*, kG*), for each of which Δ < 0.001. 

6. Construct the conics c1, c2 for one pair (kF*, kG*), make sure that Δ < 0.001, and con-
struct the conic c3-1 (see Section 7). 

7. Repeat the constructions for the second pair (kF*, kG*) and construct the conic c3-2. 
8. Find points S, T and construct the final conic c4 using points 1, 2, S, T, 9 (see Section 

7). 
9. Compare the conic c4 with the control conic or the construction result for another 

combination of defined points. Based on the comparison results, estimate the solution error 
(see Section 7). 

9. Quadric determinant  
Nine points unambiguously define a quadric. However, such a determinant requires 

complex constructions when solving even the simplest geometric problems. [3–5] proposed 
the use of a more convenient and visual determinant of three conics, each of which is a sec-
tion of the desired quadric. Let us consider the creation of such a determinant.  

  



 
Fig. 6. Quadric determinant. 

  
If the conic c4 is constructed on the surface passing through three points 1, 2, 9, we select 

two triples of points from the remaining six points, for example, 3, 4, 5 and 6, 7, 8. Using pro-
gram 2, we find the intersection points of the planes defined by these points with the conic c4. 
We obtain two groups of five points: 3, 4, 5, 10, 11 and 6, 7, 8, 12, 13 (Fig. 6). We construct two 
conics which, jointly with the conic c4, form a new determinant of the quadric c4, c5, c6. Se-
lecting other triples of points, we obtain numerous variants of the determinant. The intersec-
tion of the conics of the determinant by different planes allows us to construct new conics be-
longing to the surface of the quadric. Such an algorithm is the basis for solving geometric 
problems with a quadric.  

10. Constructing the center of the quadric 
There is a known method to find the center of a conic as the intersection point of its two 

diameters [1, 15, 16]. Let us extend this method to quadrics [5]. 
  

 

a) b) c) 
Fig. 7. Constructing the center of the quadric: a, b – constructing two diameters;  

c – the center as the intersection of diameters. 
  
Let us define the plane δ1 intersecting three conics of the determinant (Fig. 7, a). Using 

program 2 three times (see Section 2), we find six points 14–19 of the intersection of the 
plane δ1 with the conics of the determinant. Using arbitrary five out of the found six points, 
we construct the conic c7 and find its center С1. We define the second plane δ2 || δ1 and con-
struct the conic c7* of the section by the plane δ2 with the center point С1*. Using points C1, 
C1*, we construct a segment of the diameter u. 



We define the plane δ3 intersecting the planes δ1, δ2. We find points 20–25 of its inter-
section with the conics of the determinant and construct the conic c8 with the center C2 (Fig. 
7, b). We define the next plane δ4 || δ3 and construct the conic c8* with the center C2* and 
the segment v (C2, C2*) of the second quadric diameter. 

We find point C of the intersection of the quadric diameters defined by the segments u, v, 
which is the desired center of the quadric (Fig. 7, c). 

If the conics of the determinant do not allow us to construct the necessary conics of the 
sections, we should supplement the determinant with new conics. If the diameters of the 
quadric u, v are parallel, the center is missing. This indicates that the quadric is one of parab-
oloids (see Section 12 below). 

The diameters u, v are generally formed as skew lines due to construction errors. The 
length of the segment of the shortest distance between the diameter segments can be used as 
the error. In the considered example, the length of the error segment was ≈0.060. 

If there is a control quadric, the error can be estimated by the average distance between 
the segments u, v and the center of the control quadric. In the experiment considered, this 
error was 0.15. The error was 0.80% with respect to the average size of the scale region of the 
defined points. 

11. Constructing the principal axes of the quadric 
[4,5] proposed a projective algorithm for constructing the principal axes of a quadric. We 

present our algorithm (program 7) based on the following assumption. If the foot of the per-
pendicular dropped from the center of the quadric to the section plane coincides with the cen-
ter of the section conic, the perpendicular coincides with one of the axes of the quadric.  

  

 

а) b) 
Fig. 8. Constructing the axis of the quadric: a – algorithm; b, c – construction cycle. 

  
Statement of Problem (Fig. 8, а). Find the axes of the quadric by the determinant of the 

quadric, the conics c4, c5, c6, and its center (point C). 
1. Define a cutting plane δ and, based on the determinant of the quadric, construct the 

conic c9 of the section and determine its center C1. 
2. Let's construct a segment t (C, C1). Drop the perpendicular p from the center of the 

quadric C to the plane of the conic. The foot of the perpendicular is point L. Measure the an-
gle φ between the segments t, p. Define the angle ε as a fraction of the angle φ, i.e. ε= φ: n, 
where n=2…20. 

3. In the plane (t, p), rotate the segment p by an angle ε towards the segment t and find 
point L*, to which point L has moved.  

4. Define a new plane δ* so that it passes through point L* perpendicular to the new posi-
tion of the segment p. Construct a conic of the section c9* by the plane δ*. 



5. Arrange a cycle with iterations i, in which point L is taken as point L*, then repeat steps 
2–4. Control the value of the angle φ in the cycle. It has been established that with an in-
crease in the iterations i, the value of the angle φ continuously decreases (Fig. 8, b). The pa-
rameter n determines the smoothness of the angle decrease.  

6. Run the cycle (Fig. 8, c) until φ becomes less than the permissible value, for example, 
0.01⁰. The position of the segments t, p at the end of the cycle is taken as the axis of the quad-
ric z defined with the accepted permissible error. 

7. In order to find the other two axes of the quadric by the determinant of the quadric, 
construct its section perpendicular to the found z-axis. Move the axes of the constructed conic 
to the center of the quadric. A triple of principal axes of the quadric is formed together with 
the first axis (Fig. 9, a). 

12. Constructing the frame and surface of the quadric 
Based on the determinant and the previously found axis of the quadric, we construct its 

axial and transverse sections. These can be arbitrary sections of the specified direction, in 
particular, sections by the coordinate planes XZ, YZ, XY. The sections allow us to determine 
the quadric type (ellipsoid, hyperboloid, etc.). Taking into account the quadric type, we can 
construct its frame. 

  

 

 

а) b) 
Fig. 9. Frame (a) and surface of the quadric (b). 

  
In the considered example, the axial section is the hyperbola h, the transverse section is 

the ellipse e1, therefore, the quadric is an elliptical one-sheet hyperboloid (Fig. 9, a). Let us 
construct the frame of the quadric from parallel ellipses. These ellipses are mutually similar 
[1, 13, 15] and their centers belong to the longitudinal axis of the quadric. In order to con-
struct an arbitrary cross section, for example, the ellipse e2, we copy the ellipse e1 to the posi-
tion of the ellipse e1*. In the plane of the ellipse e1* we draw a straight line from the center of 
the ellipse to the intersection with the hyperbola h. We scale e1* to align point K1 with point 
K2. 

Using the known AutoCAD command, we construct a surface by the frame (Fig. 9, b).  

13. Peculiar features of a hyperbolic paraboloid 
Let the nine points have the coordinates given in Table 3. Repeating the constructions 

(see Section 5), we obtain the region of real solutions (Fig. 10, a). The points have the same 
color marking (see Table 2). The boundaries of the region differ significantly from the previ-
ous example (see Fig. 3, a). After constructing several diagonal series, we obtain a line of ex-
act solutions h. Similar to the previous example, this line is approximated by a hyperbola with 
high accuracy. 

  



Table 3. The coordinates of points for the hyperbolic paraboloid 

Point # X Y Z 

1 16.762  77.351  110.344 

2 89.350 17.000 77.196 

3 30.829 0  30.362 

4 48.172 17.000 54.467 

5 16.400 42.612 68.237 

6 73.422 77.351 54.543 

7 100.737 37.686 64.341 

8 128.805 53.521 39.077 

9 50.403 59.529 70.860 

  
Having selected two arbitrary points on the hyperbola h, we implement the Engel algo-

rithm (see Section 8). The constructed conic c4 is a parabola. The quadric determinant (see 
Section 8) contains the parabola c4 and the hyperbolas c5, c6 (Fig. 10, b). 

  

 

а) b) 
Fig. 10. Hyperbolic paraboloid: а – the region and hyperbola of real solutions;  

b – the determinant of the quadric. 
  
In order to find the center of the quadric, we constructed two pairs of parallel conics c7, 

c7* and c8, c8* (Fig. 11, a). The planes of these conics were set parallel to the intersection line 
of the planes with the conics of the determinant c5 and c6. Figure 11, a displays the planes c5, 
c6, c7, c7*, c8, c8* as straight lines. The conics c7–c8* were constructed from the intersection 
points of the planes of these conics with the quadric determinant. For example, the conic c7 is 
constructed using five out of six intersection points 30–35. 

We determined the centers of the conics and constructed the diameters of the quadric u 
(C1, C1*) and v (C2, C2*) using them. We established that, unlike the previous example (see 
Fig. 7, c), the diameters u, v are mutually parallel, i.e., the center of the quadric, being their 
intersection point, is missing. This indicates that the quadric is one of the paraboloids. 

In order to find the axis of the quadric, we construct a section of the quadric perpendicu-
lar to the diameters u, v. In our example, the section is the hyperbola c9 (Fig. 11, a, b) con-
structed from points 40–45. The segment ax perpendicular to the plane of the conic c9 pass-
ing through its center C3 is the Z-axis of the quadric (Fig. 11, b). The axes of the hyperbola c9 
determine the coordinate planes of symmetry ZX and ZY of the desired quadric.  

  



 

а) b) c) 
Fig. 11. Construction of the axes (a), vertex (b), and surface (c) of the hyperbolic paraboloid. 

  
Having constructed the section of the quadric by the coordinate planes, we find the vertex 

of the quadric V, as well as the parabolas p1, p2 (Fig. 11, c). We take p1 as the guiding parabo-
la and p2 – as the generating parabola. We construct the frame of the quadric by the parallel 
displacement of the parabola p2 along p1. Using the frame, we create the surface of the hy-
perbolic paraboloid H. Cutting out the section H*, we obtain the well-known form of this sur-
face – a skew plane. 

14. Conclusions 
1. We developed a program system in the AutoLisp language to construct a quadric de-

fined by nine points using the Engel algorithm. The construction error does not exceed 0.1% 
of the average sizes of the region of defined points. 

2. There is a region of real solutions for any set of nine points (defined subject to the re-
strictions on their mutual position [3–5]) which does not require operations with imaginary 
parameters. The region of real solutions contains a line of exact solutions. 

3. We developed a method for determining the region and line of exact real solutions. In 
the adopted coordinate system, the line of exact solutions is approximated by a hyperbola. In 
order to construct a conic using the Engel algorithm, it is sufficient to select two arbitrary pa-
rameter points defined on this line. The arbitrariness of selection shows many possible op-
tions for solving the problem leading to a single exact solution. 

4. We proposed an interactive algorithm for constructing the principal axes of a quadric. 
5. We experimentally confirmed the conclusions 1–4 for the ellipsoid, elliptic and hyper-

bolic paraboloids, one- and two-sheet hyperboloids. 
The lines of our further studies on the construction of a quadric by nine points will cover: 
• The theoretical justification of the obtained experimental conclusions about the exist-

ence of real solutions in the form of a hyperbola in the Engel algorithm; 
• The experimental verification of the potential construction of a quadric, if imaginary in-

tersection points are formed during construction; 
• The experimental study and comparative estimate of other well-known algorithms for 

solving the quadric problem. 
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